PTAS FOR k-TOUR COVER PROBLEM ON THE PLANE FOR MODERATELY LARGE VALUES OF k
نویسندگان
چکیده
منابع مشابه
PTAS for k-Tour Cover Problem on the Plane for Moderately Large Values of k
Let P be a set of n points in the Euclidean plane and let O be the origin point in the plane. In the k-tour cover problem (called frequently the capacitated vehicle routing problem), the goal is to minimize the total length of tours that cover all points in P , such that each tour starts and ends in O and covers at most k points from P . The k-tour cover problem is known to be NP-hard. It is al...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولThe Minimum k-Cover Problem
distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract We consider the problem of determining the minimum cardinality collection of substrings, each of given length k ≥ 2, that " cover " a given string x of length n. We describe an approach to solve this prob...
متن کاملk , l ) FOR LARGE VALUES OF x
We extend a result of Ramaré & Rumely, 1996 [3] about Chebyshev function θ in arithmetic progressions. We find a map ε(x) such that | θ(x; k, l) − x/φ(k) |< xε(x) and ε(x) = O ( 1 lna x ) (∀a > 0) whereas ε(x) is a constant in [3]. Now we are able to show that | θ(x; 3, l)− x/2 |< 0.262 x lnx and, for x > 151, π(x; 3, l) > x 2 lnx .
متن کاملA Note on Random k-SAT for Moderately Growing k
Consider a random instance I of k-SAT with n variables and m clauses. Suppose that θ, c > 0 are any fixed real numbers. Let k = k(n) ≥ ( 1 2 + θ ) log2 n. We prove that lim n→∞ Pr(I is satifiable) = { 1 m ≤ ( 1− c √ n ) 2kn ln 2 0 m ≥ ( 1 + c √ n ) 2kn ln 2.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Foundations of Computer Science
سال: 2010
ISSN: 0129-0541,1793-6373
DOI: 10.1142/s0129054110007623